
Privacy Preservation through Random Non-linear Data Distortion

Abstract
Consider a scenario in which the data owner has some pri-
vate/sensitive data and wants a data miner to access it for study-
ing “important” patterns without revealing the sensitive informa-
tion. Privacy preserving data mining aims to solve this problem
by randomly transforming (distorting) the data prior to itsrelease.
Previous work only considered the case of linear distortions — ad-
ditive, multiplicative or a combination of both — for studying the
usefulness of the distorted output and the privacy preserved. In this
paper, we consider a general class of potentially non-linear transfor-
mations of the data. We develop bounds on the expected accuracy
of our non-linear distortion and also quantify privacy by using stan-
dard definitions. We show how our general transformation canbe
used in practice for two specific problem instances: a linearmodel
and a popular non-linear modelviz. neural network. The paper
presents a thorough theoretical analysis of the transformation and
possible applications. Experiments conducted on real-life datasets
demonstrate the effectiveness of the approach.

1 Introduction

The first part of the paper talks about distance and the second
part talks about privacy.

2 Related Work

Data perturbation-based privacy preserving techniques per-
turb data elements or attributes directly by either additive
noise, multiplicative noise or a combination of both. They all
rely on the fundamental property that the randomized dataset
may not reveal private data while still allowing data analysis
to be performed on them. We discuss each of them in more
details in this section.

Given a data setD, Agrawal and Srikant [1] proposed
a technique of generating a perturbed datasetD∗ by using
additive noisei.e. D∗ = D + R, where the entries ofR
are i.i.d. samples from a zero mean unit variance gaussian
distribution. Karguptaet al. [6] questioned the use of
random additive noise and pointed out that additive noise
can be easily filtered out using spectral filtering techniques
thereby leading to privacy breach of the data.

Due to the potential drawback of additive perturbations,
several types of multiplicative perturbation techniques have
been proposed in the literature. Kim and Winkler [7] pro-
posed one such perturbation technique which multiplies a
random number generated from a truncated Gaussian distri-
bution of mean one and small variance to each data pointi.e.
D∗ = D ×R, where the matrix multiplication is carried out
element-wise. Geometrically, such a perturbation scheme is
no more than multiplying the data by a rotation matrix and

hence it might be possible to breach the privacy if one can
estimate the rotation matrix. One such attack technique has
been discussed by Liuet al. [8] which uses a sample of the
input and output to derive approximations on the estimate of
the rotation matrix.

A closely related but different technique uses random
data projection to preserve the privacy. In this technique,
the data is projected into a random subspace using either
orthogonal matrices (e.g. DCT/DFT as done by Mukherjee
et al. [10]) or pseudo-random matrices (as done by Liuet
al. [9]). It can be shown that using such transformations, the
euclidean distance among any pairs of tuples is preserved
and hence, many distance-based data mining techniques
can be applied. Moreover, the privacy of the projection
scheme can be quantified using the number of columns of
the projection matrix. Figure 1 shows the distribution of the
error as a function of the output dimension.
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Figure 1: This graph shows the variation of error in esti-
mating the inner product between two arbitrary vectors vs.
the dimension of the output vector. The output is generated
by randomly projecting the input in the subspace shown by
points on thex-axis. The dimension of the input vectors are
50 as shown by dotted line. They-axis refers to the error.
The squares to the left of this line refers to dimensionality
reduction and to the right refers to dimensionality inflation.
Each point in the graph is an average of 100 independent
trials.

In a more recent study, Chen et al. [3] proposed
a combination of these techniques:D∗ = T + R ×



D + N , where T is a random translation matrix,R is
a random rotation matrix andN is a noise matrix. The
paper further shows how to break this transformation in
practice using a linear regression technique when the attacker
knows a set of input-output pairs. However, the success of
this attack depends on the variance of the matrices. The
paper further defines a privacy measure known asvariance
of difference(VoD) which measures the difference of the
covariance matrix between each column ofD∗ andD. We
discuss this in more details later.

Data perturbation for categorical attributes have also
been proposed by Warner [12] and [4]. Evfimevskiet al.
proposed theγ-amplification model [5] to bound the amount
of privacy breach in categorical datasets.

3 Background

In this section we present the notations, the problem defini-
tion and an overview of the approach.

3.1 Notations Let x = (x1, x2, . . . , xn) ∈ R
n be an

input data vector. Letx∗ = (x∗
1, x

∗
2, . . . , x

∗
p) ∈ R

p

be the corresponding output generated according to some
transformationT : R

n → R
p. In this paper we study a

very general form ofT :

x
∗ = T (x) = B + Q × f (A + Wx)(3.1)

wheref : R → R is a function which1

1. acts element-wise on its argument,

2. is continuous in the real lineR,

3. bounded on all bounded intervals, and

4. f(x) = O
(

eα|x|
)

as |x| → ∞ whereα ∈ R is a
constant.

[B]p×1, [Q]p×m, [A]m×1, and [W]m×n are matrices (with
dimensions shown) whose entriesbij , qij , aij , andwij are
each independently drawn from normal distributions with
mean zero and standard deviationsσb, σq, σa, and σw

respectivelye.g. wij ∼ N (0, σw). The normal distribution
assumption for generating random matrices is not new and
has been proposed by several authors [3][9]. Special cases
of T can be instantiated by choosing specific instances of
f two of which we discuss in Section 6.E(·) denotes the
mean of a random variable andσ2(·) denotes its variance.
The inner product between two vectorsx andy is denoted
by x · y.

1These are sufficient but by no means necessary conditions, which are in
place to ensure the existence of the improper integrals thatwe later derive.

3.2 Problem Definition In this paper we analyze the
relation between the input data vectors and their corre-
sponding outputs under the transformationT . While such
a relationship can be studied in many different ways, we
focus on theinner productbetween the input and the output.
Inner product is an important primitive which can be used
for many advanced data mining tasks such as distance com-
putation, clustering, classification and more. Specifically,
we try to gain insight into the following problem.

Problem Statement: Given two vectors x =
(x1, x2, . . . , xn) ∈ R

n and y = (y1, y2, . . . , yn) ∈ R
n,

let x∗ = T (x) = (x∗
1, x

∗
2, . . . , x

∗
p) ∈ R

p and
y∗ = T (y) = (y∗

1 , y∗
2 , . . . , y

∗
p) ∈ R

p be the corre-
sponding output vectors. Sincex∗ and y∗ are random
transformations of their parent vectors, we analyze the
relationship betweenx · y andx∗ · y∗. Our study in this
paper focuses on

1. understanding theaccuracy of T in preserving dis-
tancesi.e. studying the properties ofE [x∗ · y∗], and

2. analyzing the privacy-preserving properties ofT .

3.3 Overview of Approach

4 Non-linear Data Distortion

In this section we present our data distortion method using
a potentially non-linear transformation. Later we will ana-
lyze two special cases of this method: (1)f = tanh function
which corresponds to the non-linear function used in neu-
ral networks, and (2)f is an identity function which corre-
sponds to a linear transformation usingT .

In the next subsection we introduce the mechanism of
this transformation and then show its distance-preserving
properties.

4.1 Mechanism Let [D]m×n be a data set owned by Alice
in which there arem instances each of dimensionalityn.
Alice wants Mark (a data miner) to grant access to this
dataset. However, she does not want Mark to look at the
raw data. So for every vectorx ∈ D, Alice generates a new
tuplex∗ ∈ D∗ according to the following transformation:

x
∗ = B + Q × f(A + Wx)(4.2)

whereB, Q, A andW are all mean zero and constant vari-
ance gaussian i.i.d. random matrices as defined in Section
3.1. Figure 2 shows sample input data. Figure 3 shows the
perturbation achieved by the transformation in different trials
for the same input.

In the next subsection we discuss how the inner product
between two input vectors is related to their transformed
counterpart.
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Figure 3: Sample outputs for the helix data set. Different plots show the different outputs achieved in different trialswith
the same input.
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Figure 2: Sample input data set.

4.2 Derivation of E[x∗ · y∗] In this section we show how
E[x∗ · y∗] can be evaluated.

Note that,

E[x∗ · y∗] = E[x∗
1y

∗
1 + x∗

2y
∗
2 + . . . + x∗

py
∗
p]

= E [x∗
1y

∗
1 ] + E [x∗

2y
∗
2 ] + . . . + E

[

x∗
py

∗
p

]

= pE [x∗
i y

∗
i ](4.3)

wherei is arbitrary. Further, lettingwi denote thei-th row

of W, we have

x∗
i y

∗
i =

[

bi +

m
∑

ℓ=1

qiℓf(aℓ + wℓx)

]

·
[

bi +

m
∑

ℓ=1

qiℓf(aℓ + wℓy)

]

In taking the expected value of the above expression, one
need only consider those terms that are not linear in bothqiℓ

andbi. All other terms evaluate to zero under the expected
value operator by the independence of the random variables
concerned and their property of having mean zero. Hence,

E [x∗
i y

∗
i ]

= E

[

b2
i +

m
∑

ℓ=1

q2
iℓf(aℓ + wℓx)f(aℓ + wℓy)

]

= E
[

b2
i

]

+ mE
[

q2
iℓ

]

E [f(aℓ + wℓx)f(aℓ + wℓy)]

= σ2
b + mσ2

qE[f(ai + wix)f(ai + wiy)](4.4)

where i and ℓ are interchangeable. So it suffices to find
E[f(ai + wix)f(ai + wiy)] wherei is arbitrary. Below we
define two vectorŝx andŷ which aid in finding the expected
value.

DEFINITION 4.1. Let x̂ and ŷ be(p + 1)-dimensional vec-
tors defined as follows:

x̂ = (σwx, σa)(4.5)

ŷ = (σwy, σa)(4.6)

whereσw andσa are the variances ofW andA respectively
and,x andy are the inputs.



Now let

X = ai + wix

Y = ai + wiy

be two random variables. NowX andY are linear combi-
nations of normally distributed random variables; hence they
themselves are gaussian random vectors. Thus, it is easy to
verify that

X ∼ N(0, ||x̂||2)
Y ∼ N(0, ||ŷ||2)

Combining Equations 4.3 and 4.4, we can write:

(4.7) E[x∗ · y∗] = p
{

σ2
b + mσ2

qE [f(X)f(Y )]
}

The last equation shows that the expected inner product can
be evaluated using the joint probability distribution between
X andY . Further, it can be shown that sinceX andY are
gaussian random variables, the joint probability distribution
is actually a bivariate gaussian distributiongX,Y (x, y):

gX,Y (x, y) =
1

2π||x̂||||ŷ||
√

1 − ρ2
X,Y

×

exp

[

− 1

2(1 − ρ2
X,Y )

(

x2

||x̂||2 +
y2

||ŷ||2 − 2ρX,Y xy

||x̂||||ŷ||

)

]

where for this form to be valid||x̂|| and||ŷ|| must be nonzero
andρX,Y , the correlation coefficient ofX andY , must not
be±1. Unless otherwise stated, from now on we will assume
that

• ||x̂|| > 0, ||ŷ|| > 0, and

• ρX,Y 6= ±1

Note that these conditions are equivalent to|x̂ · ŷ| <

||x̂||||ŷ||. ρX,Y can be defined in terms of̂x andŷ as:

ρX,Y =
x̂ · ŷ

||x̂||||ŷ||(4.8)

Finally, we can write,

E[f(X)f(Y )] =

∫ ∞

−∞

∫ ∞

−∞

f(x)f(y)gX,Y (x, y)dxdy

Note thatE[f(X)f(Y )] can be difficult if not impos-
sible to solve explicitly and in full generality, dependingon
the choice off . However, givenf , the above integrals can be
approximated numerically for instances ofx andy in such a
way that scales very well with the input dimension,n, which
enters into the (trivial) computations of||x̂||, ||ŷ||, andx̂ · ŷ
alone. Using such an approximation,E[f(X)f(Y )]approx,

one can obtain a numerical approximation ofE[x∗ · y∗] (re-
fer to Equation 4.7). However, the approximation becomes
less accurate the largerp, m, andσq are. Sincef is bounded,
it is true thatE[f(X)f(Y )] is convergent. Putting it all to-
gether, we can write:

E[x∗ · y∗] = pσ2
b

+ pmσ2
q

∫ ∞

−∞

∫ ∞

−∞

f(x)f(y)gX,Y (x, y)dxdy(4.9)

Next, we state some properties ofE[f(X)f(Y )]:

• Case 1: if x̂ · ŷ = 0:

– This implies that X and Y are independent
(since X and Y are gaussian vectors). Hence
E[f(X)f(Y )] = E[f(X)]E[f(Y )].

• Case 2: if x̂ · ŷ < 0 or x̂ · ŷ > 0:

– With the help of the additional assumption that
f is an odd function, it can be shown using the
expression forgX,Y (x, y) that

E[f(X)f(Y )] < 0 or E[f(X)f(Y )] > 0.

Since computingE[f(X)f(Y )] is difficult to find in
full generality, in the next section we develop a bound on
E[f(X)f(Y )] and analyze its properties.

5 Bounds onE[f(X)f(Y )]

The improper integral forE[f(X)f(Y )] (Equation 4.9) re-
mains intractable without further knowledge off . In the ab-
sence of an explicit antiderivative, givenf one can generate
a table of values forE[f(X)f(Y )]approx obtained by numer-
ical integration for a number of choices of||x̂||, ||ŷ||, and
x̂ · ŷ. In order to develop a bound onE[f(X)f(Y )], we use
the following lemma (proof omitted).

LEMMA 5.1. |E[f(X)f(Y )]| ≤
√

E[f2(X)]E[f2(Y )]

The following lemma (Lemma 5.2) shows the bound on
E[f(X)f(Y )].

LEMMA 5.2. Let X , Y , x̂ and ŷ be as defined in the
previous sections. It can be shown that,

|E[f(X)f(Y )]| ≤
√

(
∫ ∞

−∞

f2(x) · e−x2/(2||x̂||2)

√
2π||x̂||

dx

)

×
√

(
∫ ∞

−∞

f2(y) · e−y2/(2||ŷ||2)

√
2π||ŷ||

dy

)



Proof.

E[f2(X)] =

∫ ∞

−∞

∫ ∞

−∞

f2(x)gX,Y (x, y)dxdy

=

∫ ∞

−∞

f2(x)dx

∫ ∞

−∞

gX,Y (x, y)dy

=

∫ ∞

−∞

f2(x)gX(x)dx

=

∫ ∞

−∞

f2(x) · e−x2/(2||x̂||2)

√
2π||x̂||

dx

if X is not degenerate. Similarly,

E[f2(Y )] =

∫ ∞

−∞

f2(y) · e−y2/(2||ŷ||2)

√
2π||ŷ||

dx

Therefore, the bound on|E[f(X)f(Y )]| can be written as:

|E[f(X)f(Y )]| ≤
√

(
∫ ∞

−∞

f2(x) · e−x2/(2||x̂||2)

√
2π||x̂||

dx

)

×
√

(
∫ ∞

−∞

f2(y) · e−y2/(2||ŷ||2)

√
2π||ŷ||

dy

)

(5.10)

5.1 Variance Analysis In practice, given two input vec-
tors, it is difficult to run the transformation for many inde-
pendent trials and then take the average inner products of the
output vectors. In this section we derive bounds on the vari-
ance of the estimated inner product, in order to quantify the
error injected for a single run of the transformation.

LEMMA 5.3. LetX = ai + wix andY = ai + wiy be two
random variables whereai is an arbitrary entry of[A]m×1,
wi is an arbitrary row of[W]m×n, p is the dimension of the
output space, andx andy are the inputs. The variance of
the inner product between the output vectorsx∗ andy∗ can
be written as:

σ2
(x∗·y∗) = 2pσ4

b + pmσ2
bσ2

q (E[f(Y )2] + E[f(X)2])

+pmσ4
q(3pE[f(X)2f(Y )2] − pE[f(X)f(Y )]2

+(m − 1)E[f(X)2]E[f(Y )2])

Proof. The proof is extremely algebra intensive. We omit
it here due to shortage of space and plan to report it in an
extended version of this paper.

What does this expression tell us?. Hillol’s expres-
sion tells us that variance decreases as the size of the pro-
jection matrix increases. Can we have a similar result
here?

6 Special cases

In this section we study two special cases of the general
transformationT : (1) whenf is a sigmoid ortanh function
which has been used as a popular choice for non-linear
mapping , and (2) whenf is an identity function making
the resultingT linear.

6.1 f = tanh function In this section we analyze the
properties ofE[x∗ · y∗] whenf is a sigmoid or hyperbolic
tangent (tanh) function. Our choice off = tanh is not
arbitrary; it makes transformationT resemble that of a two-
layer neural network, a tool widely used in data mining and
machine learning for learning non-linear relationships from
the data. With such a substitution,T takes the following
form:

H(x) = tanh(A + Wx)

x
∗ = B + QH(x)

However, for the results here to describe such a trained neu-
ral network, one must assume that the weights are indeed in-
dependent and normally distributed with mean zero. Weights
are assumed to be normal in many research as shown in [2]
and [11].

Even with the substitutionf(x) = tanh(x) in Equation
4.9, evaluation ofE[tanh(X) tanh(Y )] in closed form is
still intractable. Hence we use the bound presented in
Lemma 5.2 to gain insight intoE[tanh(X) tanh(Y )]. Let
us first evaluateE[tanh2(X)]. By definition,

E[tanh2(X)] =

∫ ∞

−∞

tanh2(x) · e−x2/(2||x̂||2)

√
2π||x̂||

dx

Unfortunately, an anti-derivative does not exist for this func-
tion. So we approximate thetanh function with a linear
function that takes on the values−1 and1 far to the left and
right of the origin, respectively, and has a slope of constant,
positive value in between. For simplicity we make this slope
tangent to the slope of thef function at the origin, which
means the slope of our approximation to be 1 over[−1, 1]
and zero otherwise. LettingΨ(X) denote the approximating
function,

tanh(X) ≈ Ψ(X) = −1 ·χ(−∞,−1)+x ·χ[−1,1]+1 ·χ(1,∞)

whereχ is the indicator function. Figure 4 shows the original
tanh function, the approximation to it and the step function.

It is easy to see that,

Ψ(X)2 = 1 · χ(−∞,−1) + x2 · χ[−1,1] + 1 · χ(1,∞)
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Figure 4: Hyperbolic tangent (tanh) function shown in bold.
Ψ(x) is the approximation totanh(x). A step function is
also shown.

DenotinggX(x) as the marginal distribution ofX we get,

E[tanh2(x)] =

∫ ∞

−∞

tanh2(x) · gX(x)dx

<

∫ ∞

−∞

Ψ(X)2 · gX(x)dx

=

∫ −1

−∞

gX(x)dx +

∫ 1

−1

x2 · gX(x)dx

+

∫ ∞

1

gX(x)dx

= 2

∫ −1

−∞

gX(x)dx +

∫ 1

−1

x2 · gX(x)dx

Term 1 = 2

∫ −1

−∞

e−x2/(2||x̂||2)

√
2π||x̂||

dx

= 2
1√

2π||x̂||

∫ −1

−∞

e−x2/(2||x̂||2)dx

= 2
1√
2π

∫ − 1

||x̂||

−∞

e−y2/2dy [wherey =
x

||x̂|| ]

= 2Φ

(

− 1

||x̂||

)

Now we evaluate Term 2. First we evaluate the following
integral.

∫

xe−x2/(2||x̂||2)dx =

∫

||x̂||2e−ydy [usingy =
x2

2||x̂||2 ]

= −||x̂||2e−x2/(2||x̂||2) + c

Now to evaluate Term 2 (using the previous result),

Term 2 =
1√

2π||x̂||

[
∫ 1

−1

x2 · e−x2/(2||x̂||2)dx

]

=
1√

2π||x̂||

[

x ·
∫

x · e−x2/(2||x̂||2)dx

]

∣

∣

∣

∣

∣

1

−1

+
1√

2π||x̂||

[
∫ 1

−1

||x̂||2e−x2/(2||x̂||2)dx

]

=
−1√

2π||x̂||
(

||x̂||2xe−x2/(2||x̂||2)
)

∣

∣

∣

∣

∣

1

−1

+
||x̂||√

2π

[
∫ 1

−1

e−x2/(2||x̂||2)dx

]

=
−||x̂||√

2π

(

e−1/(2||x̂||2) + e−1/(2||x̂||2)
)

+||x̂||2
[

Φ

(

1

||x̂||

)

− Φ

(

− 1

||x̂||

)]

Combining the results,

E[tanh2(x)] < 2Φ

(

− 1

||x̂||

)

+ ||x̂||2
[

Φ

(

1

||x̂||

)

− Φ

(

− 1

||x̂||

)]

− ||x̂||√
2π

(

2e−1/(2||x̂||2)
)

Using a similar argument, it can be shown that,

E[tanh2(y)] < 2Φ

(

− 1

||ŷ||

)

+ ||ŷ||2
[

Φ

(

1

||ŷ||

)

− Φ

(

− 1

||ŷ||

)]

− ||ŷ||√
2π

(

2e−1/(2||ŷ||2)
)

These results can now be combined to get the final form of
the bound using Equation 5.10.

Figure 5 shows a plot of the bound
|E[tanh(X) tanh(Y )]| with variation of ||x̂|| and ||ŷ||.
It can be shown that the bound lies between 0 and 1. When
both ||x̂|| and ||ŷ|| are smalli.e. close to the origin, we
know that the expected inner product of their output should
be close to 0 as well. Looking at the figure we see that this
is indeed the case. So our bound is a good approximation
when we are close to the origin and becomes crude as we
move further away from the origin.

6.2 Linear Transformation The second transformation
that we study in this section is a linear transformation.
Linear transformations have been widely studied in the form
of random projection, multiplicative perturbation [9][6][3]
where the output is linearly dependent on the input:

x
∗ = T + Rx
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Figure 5: Plot of|E[tanh(X) tanh(Y )]| vs. ||x̂|| and||ŷ||.

whereT andR are random translation and rotation matrices.
In order for our transformationT to be linear, we assume
thatf is an identity functioni.e. f(x) = x, ∀x ∈ R. Unlike
the previous section, in this section we show how a closed
form expression forE[x∗ · y∗] can be developed for such a
transformation.

Using the definition ofX andY , it is easy to show that,

E[f(X)f(Y )] = E[XY ] = x̂ · ŷ
Sincex̂ = σw(x̂, σa) andŷ = σw(ŷ, σa),

x̂ · ŷ = σ2
w(x · y) + σ2

a

Combining these results, we have:

E[x∗ · y∗] = pσ2
b + pmσ2

qE[XY ]

= pσ2
b + pmσ2

q (x̂ · ŷ)

= pσ2
b + pmσ2

aσ2
q + pmσ2

qσ2
w (x · y)

This equation shows that for a linear transformation, the in-
ner product of the output vectors is proportional to the inner
product of the input vectors. In other words, the distances
are preserved on average (up to scaling and translation). This
result is in line with what some other authors reported else-
where [3][9].

Let us investigate the quality of the bound for this
transformation. Substitutingf(x) = x and f(y) = y,
in Equation 5.10, we see that the integrals areE[x2] and
E[y2] respectively. Now, sincex ∼ N(0, ||x̂||2) andy ∼
N(0, ||ŷ||2), E[x2] = ||x̂||2 andE[y2] = ||ŷ||2. Thus,

Eest[XY ] ≤ ||x̂||||ŷ||
whereEest denotes the estimated value of the expectation.
Therefore we can write the following expression for the
bound:

E[x∗ · y∗] ≤ pσ2
b + pmσ2

q ||x̂||||ŷ||

where,

||x̂|| =
√

σ2
w(||x||2) + σ2

a

||ŷ|| =
√

σ2
w(||y||2) + σ2

a

Figure 6 shows a plot ofE[x∗ · y∗] whenθ, the angle
betweenx̂ and ŷ varies. For all the figures, the circles
show the true variation ofE[x∗ · y∗] vs. θ. The squares
represent the bound. Note that for all the figures, the
bound correctly represent the inner-product only whenθ =
0,±2π,±4π, . . . . The three figures demonstrate the effect
on the output for three values of||x̂|| and ||ŷ||. As can be
seen, the bound is a good approximation of the true value
when||x̂|| and||ŷ|| are small.
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